Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.501
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Genes (Basel) ; 15(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38674361

RESUMO

Bacillus anthracis is the bacterium responsible for causing the zoonotic disease called anthrax. The disease presents itself in different forms like gastrointestinal, inhalation, and cutaneous. Bacterial spores are tremendously adaptable, can persist for extended periods and occasionally endanger human health. The Anthrax Toxin Receptor-2 (ANTXR2) gene acts as membrane receptor and facilitates the entry of the anthrax toxin into host cells. Additionally, mutations in the ANTXR2 gene have been linked to various autoimmune diseases, including Hyaline Fibromatosis Syndrome (HFS), Ankylosing Spondylitis (AS), Juvenile Hyaline Fibromatosis (JHF), and Infantile Systemic Hyalinosis (ISH). This study delves into the genetic landscape of ANTXR2, aiming to comprehend its associations with diverse disorders, elucidate the impacts of its mutations, and pinpoint minimal non-pathogenic mutations capable of reducing the binding affinity of the ANTXR2 gene with the protective antigen. Recognizing the pivotal role of single-nucleotide polymorphisms (SNPs) in shaping genetic diversity, we conducted computational analyses to discern highly deleterious and tolerated non-synonymous SNPs (nsSNPs) in the ANTXR2 gene. The Mutpred2 server determined that the Arg465Trp alteration in the ANTXR2 gene leads to altered DNA binding (p = 0.22) with a probability of a deleterious mutation of 0.808; notably, among the identified deleterious SNPs, rs368288611 (Arg465Trp) stands out due to its significant impact on altering the DNA-binding ability of ANTXR2. We propose these SNPs as potential candidates for hypertension linked to the ANTXR2 gene, which is implicated in blood pressure regulation. Noteworthy among the tolerated substitutions is rs200536829 (Ala33Ser), recognized as less pathogenic; this highlights its potential as a valuable biomarker, potentially reducing side effects on the host while also reducing binding with the protective antigen protein. Investigating these SNPs holds the potential to correlate with several autoimmune disorders and mitigate the impact of anthrax disease in humans.


Assuntos
Antraz , Antígenos de Bactérias , Mutação , Polimorfismo de Nucleotídeo Único , Receptores de Peptídeos , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Humanos , Antraz/microbiologia , Antraz/genética , Antraz/imunologia , Receptores de Peptídeos/genética , Toxinas Bacterianas/genética , Bacillus anthracis/genética , Bacillus anthracis/patogenicidade , Síndrome da Fibromatose Hialina/genética , Síndrome da Fibromatose Hialina/microbiologia , Espondilite Anquilosante/genética , Espondilite Anquilosante/imunologia , Espondilite Anquilosante/microbiologia , Resistência à Doença/genética , Receptores de Superfície Celular/genética , Ligação Proteica
2.
Biochem Biophys Res Commun ; 711: 149912, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38615572

RESUMO

An accessory gene regulator (agr) in the quorum sensing (QS) system in Staphylococcus aureus contributes to host infection, virulence factor production, and resistance to oxidative damage. Artificially maintaining the inactive state of agr QS impedes the host infection strategy of S. aureus and inhibits toxin production. The QS system performs intercellular signal transduction, which is activated by the mature autoinducer peptide (AIP). It is released from cells after AgrD peptide processing as an intercellular signal associated with increased bacterial cell density. This study evaluated the effectiveness of inhibiting agr QS wherein AIP trap carriers were made to coexist when culturing Staphylococcus aureus. Immersing a nitrocellulose (NC) membrane in Staphylococcus aureus ATCC 12600 culture inhibited QS-dependent α-hemolysin production, which significantly reduced the hemolysis ratio of sheep red blood cells by the culture supernatant. A quartz crystal microbalance analysis supported AIP adsorption onto the NC membrane. Adding the NC membrane during culture was found to maintain the expression levels of the agr QS gene agrA and α-hemolysin gene hla lower than that when it was not added. Eliminating extracellular AIP signals allowed agr QS to remain inactive and prevented QS-dependent α-hemolysin expression. Isolating intercellular signals secreted outside the cell is an effective strategy to suppress gene expression in bacterial cells that collaborate via intercellular signaling.


Assuntos
Proteínas de Bactérias , Proteínas Hemolisinas , Percepção de Quorum , Staphylococcus aureus , Staphylococcus aureus/fisiologia , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/genética , Animais , Transativadores/metabolismo , Transativadores/genética , Hemólise , Ovinos , Regulação Bacteriana da Expressão Gênica , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Transdução de Sinais , Eritrócitos/metabolismo , Eritrócitos/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/metabolismo
3.
Environ Monit Assess ; 196(4): 408, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561517

RESUMO

Cyanobacteria inhabiting lotic environments have been poorly studied and characterized in Mexico, despite their potential risks from cyanotoxin production. This article aims to fill this knowledge gap by assessing the importance of benthic cyanobacteria as potential cyanotoxin producers in central Mexican rivers through: (i) the taxonomic identification of cyanobacteria found in these rivers, (ii) the environmental characterization of their habitats, and (iii) testing for the presence of toxin producing genes in the encountered taxa. Additionally, we introduce and discuss the use of the term "CyanoHAMs" for lotic water environments. Populations of cyanobacteria were collected from ten mountain rivers and identified using molecular techniques. Subsequently, these taxa were evaluated for genes producing anatoxins and microcystins via PCR. Through RDA analyses, the collected cyanobacteria were grouped into one of three categories based on their environmental preferences for the following: (1) waters with high ionic concentrations, (2) cold-temperate waters, or (3) waters with high nutrient enrichment. Populations from six locations were identified to genus level: Ancylothrix sp., Cyanoplacoma sp., and Oxynema sp. The latter was found to contain the gene that produces anatoxins and microcystins in siliceous rivers, while Oxynema tested positive for the gene that produces microcystins in calcareous rivers. Our results suggest that eutrophic environments are not necessarily required for toxin-producing cyanobacteria. Our records of Compactonostoc, Oxynema, and Ancylothrix represent the first for Mexico. Four taxa were identified to species level: Wilmottia aff. murrayi, Nostoc tlalocii, Nostoc montejanii, and Dichothrix aff. willei, with only the first testing positive using PCR for anatoxin and microcystin-producing genes in siliceous rivers. Due to the differences between benthic growths with respect to planktonic ones, we propose the adoption of the term Cyanobacterial Harmful Algal Mats (CyanoHAMs) as a more precise descriptor for future studies.


Assuntos
Toxinas Bacterianas , Cianobactérias , Tropanos , Microcistinas/análise , Proliferação Nociva de Algas , México , Toxinas Bacterianas/genética , Toxinas Bacterianas/análise , Monitoramento Ambiental , Cianobactérias/genética , Toxinas de Cianobactérias , Rios/microbiologia
4.
ACS Synth Biol ; 13(3): 816-824, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38365187

RESUMO

Candida glycerinogenes is an industrial yeast with excellent multistress resistance. However, due to the diploid genome and the lack of meiosis and screening markers, its molecular genetic operation is limited. Here, a gene editing system using the toxin-antitoxin pair relBE from the type II toxin-antitoxin system in Escherichia coli as a screening marker was constructed. The RelBE complex can specifically and effectively regulate cell growth and arrest through a conditionally controlled toxin RelE switch, thereby achieving the selection of positive recombinants. The constructed editing system achieved precise gene deletion, replacement, insertion, and gene episomal expression in C. glycerinogenes. Compared with the traditional amino acid deficiency complementation editing system, this editing system produced higher biomass and the gene deletion efficiency was increased by 3.5 times. Using this system, the production of 2-phenylethanol by C. glycerinogenes was increased by 11.5-13.5% through metabolic engineering and tolerance engineering strategies. These results suggest that the stable gene editing system based on toxin-antitoxin pairs can be used for gene editing of C. glycerinogenes to modify metabolic pathways and promote industrial applications. Therefore, the constructed gene editing system is expected to provide a promising strategy for polyploid industrial microorganisms lacking gene manipulation methods.


Assuntos
Antitoxinas , Toxinas Bacterianas , Álcool Feniletílico , Pichia , Edição de Genes/métodos , Antitoxinas/genética , Toxinas Bacterianas/genética , Escherichia coli/genética , Escherichia coli/metabolismo
5.
Microbiol Spectr ; 12(3): e0323223, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38319111

RESUMO

Cytolethal distending toxins (CDTs) are released by Gram-negative pathogens into the extracellular medium as free toxin or associated with extracellular vesicles (EVs), commonly known as outer membrane vesicles (OMVs). CDT production by the gastrointestinal pathogen Campylobacter jejuni has been implicated in colorectal tumorigenesis. Despite CDT being a major virulence factor for C. jejuni, little is known about the EV-associated form of this toxin. To address this point, C. jejuni mutants lacking each of the three CDT subunits (A, B, and C) were generated. C. jejuni cdtA, cdtB, and cdtC bacteria released EVs in similar numbers and sizes to wild-type bacteria, ranging from 5 to 530 nm (mean ± SEM = 118 ±6.9 nm). As the CdtAC subunits mediate toxin binding to host cells, we performed "surface shearing" experiments, in which EVs were treated with proteinase K and incubated with host cells. These experiments indicated that CDT subunits are internal to EVs and that surface proteins are probably not involved in EV-host cell interactions. Furthermore, glycan array studies demonstrated that EVs bind complex host cell glycans and share receptor binding specificities with C. jejuni bacteria for fucosyl GM1 ganglioside, P1 blood group antigen, sialyl, and sulfated Lewisx. Finally, we show that EVs from C. jejuni WT but not mutant bacteria induce cell cycle arrest in epithelial cells. In conclusion, we propose that EVs are an important mechanism for CDT release by C. jejuni and are likely to play a significant role in toxin delivery to host cells. IMPORTANCE: Campylobacter jejuni is the leading cause of foodborne gastroenteritis in humans worldwide and a significant cause of childhood mortality due to diarrheal disease in developing countries. A major factor by which C. jejuni causes disease is a toxin, called cytolethal distending toxin (CDT). The biology of this toxin, however, is poorly understood. In this study, we report that C. jejuni CDT is protected within membrane blebs, known as extracellular vesicles (EVs), released by the bacterium. We showed that proteins on the surfaces of EVs are not required for EV uptake by host cells. Furthermore, we identified several sugar receptors that may be required for EV binding to host cells. By studying the EV-associated form of C. jejuni CDT, we will gain a greater understanding of how C. jejuni intoxicates host cells and how EV-associated CDT may be used in various therapeutic applications, including as anti-tumor therapies.


Assuntos
Toxinas Bacterianas , Campylobacter jejuni , Vesículas Extracelulares , Humanos , Campylobacter jejuni/genética , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Pontos de Checagem do Ciclo Celular , Vesículas Extracelulares/metabolismo , Ciclo Celular
6.
Clin Microbiol Infect ; 30(5): 630-636, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38266708

RESUMO

OBJECTIVES: Data support that enterotoxigenic Bacteroides fragilis (ETBF) harbouring the Bacteroides fragilis toxin (bft) gene may promote colorectal tumourigenesis through the serrated neoplasia pathway. We hypothesized that ETBF may be enriched in colorectal carcinoma subtypes with high-level CpG island methylator phenotype (CIMP-high), BRAF mutation, and high-level microsatellite instability (MSI-high). METHODS: Quantitative PCR assays were designed to quantify DNA amounts of Bacteroides fragilis, ETBF, and each bft gene isotype (bft-1, bft-2, or bft-3) in colorectal carcinomas in the Health Professionals Follow-up Study and Nurses' Health Study. We used multivariable-adjusted logistic regression models with the inverse probability weighting method. RESULTS: We documented 4476 colorectal cancer cases, including 1232 cases with available bacterial data. High DNA amounts of Bacteroides fragilis and ETBF were positively associated with BRAF mutation (p ≤ 0.0003), CIMP-high (p ≤ 0.0002), and MSI-high (p < 0.0001 and p = 0.01, respectively). Multivariable-adjusted odds ratios (with 95% confidence interval) for high Bacteroides fragilis were 1.40 (1.06-1.85) for CIMP-high and 2.14 (1.65-2.77) for MSI-high, but 1.02 (0.78-1.35) for BRAF mutation. Multivariable-adjusted odds ratios for high ETBF were 2.00 (1.16-3.45) for CIMP-high and 2.86 (1.64-5.00) for BRAF mutation, but 1.09 (0.67-1.76) for MSI-high. Neither Bacteroides fragilis nor ETBF was associated with colorectal cancer-specific or overall survival. DISCUSSION: The tissue abundance of Bacteroides fragilis is associated with CIMP-high and MSI-high, whereas ETBF abundance is associated with CIMP-high and BRAF mutation in colorectal carcinoma. Our findings support the aetiological relevance of Bacteroides fragilis and ETBF in the serrated neoplasia pathway.


Assuntos
Bacteroides fragilis , Neoplasias Colorretais , Ilhas de CpG , Metilação de DNA , Metaloendopeptidases , Humanos , Bacteroides fragilis/genética , Bacteroides fragilis/isolamento & purificação , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/genética , Feminino , Masculino , Pessoa de Meia-Idade , Ilhas de CpG/genética , Idoso , Metaloendopeptidases/genética , Toxinas Bacterianas/genética , Fenótipo , Infecções por Bacteroides/microbiologia , Instabilidade de Microssatélites , Proteínas Proto-Oncogênicas B-raf/genética , Mutação , Adulto
7.
Cell Cycle ; 23(1): 70-82, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273425

RESUMO

Our previous findings confirmed the high enrichment of Bacteroides fragilis (BF) in fecal samples from patients with colorectal cancer (CRC). The intestinal mucosal barrier is the first defense of the organism against commensal flora and intestinal pathogens and is closely associated with the occurrence and development of CRC. Therefore, this study aimed to investigate the molecular mechanisms through which BF mediates intestinal barrier injury and CRC progression. SW480 cells and a Caco2 intestinal barrier model were treated with entero-toxigenic BF (ETBF), its enterotoxin (B. fragilis toxin, BFT), and non-toxigenic BF (NTBF). Cell counting kit-8, flow cytometry, wound healing and transwell assays were performed to analyze the proliferation, apoptosis, migration, and invasion of SW480 cells. Transmission electron microscopy, FITC-dextran, and transepithelial electrical resistance (TEER) were used to analyze damage in the Caco2 intestinal barrier model. The Azoxymethane/Dextran Sulfate Sodium (AOM/DSS) animal model was established to evaluate the effect of ETBF on intestinal barrier injury and CRC progression in vivo. ETBF and BFT enhanced the viability, wound healing ratio, invasion, and EMT of SW480 cells. In addition, ETBF and BFT disrupted the tight junctions and villus structure in the intestinal barrier model, resulting in increased permeability and reduced TEER. Similarly, the expression of intestinal barrier-related proteins (MUC2, Occludin and Zo-1) was restricted by ETBF and BFT. Interestingly, the STAT3/ZEB2 axis was activated by ETBF and BFT, and treatment with Brevilin A (a STAT3 inhibitor) or knockdown of ZEB2 limited the promotional effect of ETBF and BFT on the SW480 malignant phenotype. In vivo experiments also confirmed that ETBF colonization accelerated tumor load, carcinogenesis, and intestinal mucosal barrier damage in the colorectum of the AOM/DSS animal model, and that treatment with Brevilin A alleviated these processes. ETBF-secreted BFT accelerated intestinal barrier damage and CRC by activating the STAT3/ZEB2 axis. Our findings provide new insights and perspectives for the application of ETBF in CRC treatment.


Assuntos
Toxinas Bacterianas , Bacteroides fragilis , Neoplasias Colorretais , Fator de Transcrição STAT3 , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Animais , Humanos , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Bacteroides fragilis/genética , Bacteroides fragilis/metabolismo , Infecções por Bacteroides/patologia , Células CACO-2 , Neoplasias Colorretais/patologia , Crotonatos , Sesquiterpenos , Fator de Transcrição STAT3/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo
8.
Microbiol Spectr ; 12(2): e0310922, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38189293

RESUMO

Developing a vaccine against Clostridioides difficile is a key strategy to protect the elderly. Two candidate vaccines using a traditional approach of intramuscular (IM) delivery of recombinant antigens targeting C. difficile toxins A (TcdA) and B (TcdB) failed to meet their primary endpoints in large phase 3 trials. To elicit a mucosal response against C. difficile, we repurposed an attenuated strain of Salmonella Typhimurium (YS1646) to deliver the receptor binding domains (rbd) of TcdA and TcdB to the gut-associated lymphoid tissues, to elicit a mucosal response against C. difficile. In this study, YS1646 candidates with either rbdA or rbdB expression cassettes integrated into the bacterial chromosome at the attTn7 site were generated and used in a short-course multimodal vaccination strategy that combined oral delivery of the YS1646 candidate(s) on days 0, 2, and 4 and IM delivery of recombinant antigen(s) on day 0. Five weeks after vaccination, mice had high serum IgG titers and increased intestinal antigen-specific IgA titers. Multimodal vaccination increased the IgG avidity compared to the IM-only control. In the mesenteric lymph nodes, we observed increased IL-5 secretion and increased IgA+ plasma cells. Oral vaccination skewed the IgG response toward IgG2c dominance (vs IgG1 dominance in the IM-only group). Both oral alone and multimodal vaccination against TcdA protected mice from lethal C. difficile challenge (100% survival vs 30% in controls). Given the established safety profile of YS1646, we hope to move this vaccine candidate forward into a phase I clinical trial.IMPORTANCEClostridioides difficile remains a major public health threat, and new approaches are needed to develop an effective vaccine. To date, the industry has focused on intramuscular vaccination targeting the C. difficile toxins. Multiple disappointing results in phase III trials have largely confirmed that this may not be the best strategy. As C. difficile is a pathogen that remains in the intestine, we believe that targeting mucosal immune responses in the gut will be a more successful strategy. We have repurposed a highly attenuated Salmonella Typhimurium (YS1646), originally pursued as a cancer therapeutic, as a vaccine vector. Using a multimodal vaccination strategy (both recombinant protein delivered intramuscularly and YS1646 expressing antigen delivered orally), we elicited both systemic and local immune responses. Oral vaccination alone completely protected mice from lethal challenge. Given the established safety profile of YS1646, we hope to move these vaccine candidates forward into a phase I clinical trial.


Assuntos
Toxinas Bacterianas , Compostos de Boro , Clostridioides difficile , Humanos , Animais , Camundongos , Idoso , Toxinas Bacterianas/genética , Salmonella typhimurium/genética , Clostridioides difficile/genética , Vacinas Bacterianas , Vacinas Sintéticas , Vacinação , Imunoglobulina G , Imunoglobulina A
9.
mSystems ; 9(2): e0125523, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38193707

RESUMO

Clostridioides difficile is a Gram-positive, anaerobic, spore-forming bacterium responsible for antibiotic-associated pseudomembranous colitis. Clostridioides difficile infection (CDI) symptoms can range from diarrhea to life-threatening colon damage. Toxins produced by C. difficile (TcdA and TcdB) cause intestinal epithelial injury and lead to severe gut barrier dysfunction, stem cell damage, and impaired regeneration of the gut epithelium. Current treatment options for intestinal repair are limited. In this study, we demonstrate that treatment with the microbial metabolite urolithin A (UroA) attenuates CDI-induced adverse effects on the colon epithelium in a preclinical model of CDI-induced colitis. Moreover, our analysis suggests that UroA treatment protects against C. difficile-induced inflammation, disruption of gut barrier integrity, and intestinal tight junction proteins in the colon of CDI mice. Importantly, UroA treatment significantly reduced the expression and release of toxins from C. difficile without inducing bacterial cell death. These results indicate the direct regulatory effects of UroA on bacterial gene regulation. Overall, our findings reveal a novel aspect of UroA activity, as it appears to act at both the bacterial and host levels to protect against CDI-induced colitis pathogenesis. This research sheds light on a promising avenue for the development of novel treatments for C. difficile infection.IMPORTANCETherapy for Clostridioides difficile infections includes the use of antibiotics, immunosuppressors, and fecal microbiota transplantation. However, these treatments have several drawbacks, including the loss of colonization resistance, the promotion of autoimmune disorders, and the potential for unknown pathogens in donor samples. To date, the potential benefits of microbial metabolites in CDI-induced colitis have not been fully investigated. Here, we report for the first time that the microbial metabolite urolithin A has the potential to block toxin production from C. difficile and enhance gut barrier function to mitigate CDI-induced colitis.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Colite , Cumarínicos , Enterocolite Pseudomembranosa , Animais , Camundongos , Toxinas Bacterianas/genética , Enterotoxinas/genética , Clostridioides difficile/metabolismo , Proteínas de Bactérias/genética , Enterocolite Pseudomembranosa/tratamento farmacológico , Infecções por Clostridium/tratamento farmacológico , Colite/induzido quimicamente
10.
Future Microbiol ; 19: 21-31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38294294

RESUMO

Aims: Persistent cells are primarily responsible for developing antibiotic resistance and the recurrence of Pseudomonas aeruginosa. This study investigated the possible role of GNAT toxin in persistence. Materials & methods: P. aeruginosa was exposed to five MIC concentrations of ciprofloxacin. The expression levels of target genes were assessed. The GNAT/HTH system was bioinformatically studied, and an inhibitory peptide was designed to disrupt this system. Results: Ciprofloxacin can induce bacterial persistence. There was a significant increase in the expression of the GNAT toxin during the persistence state. A structural study of the GNAT/HTH system determined that an inhibitory peptide could be designed to block this system effectively. Conclusion: The GNAT/HTH system shows promise as a novel therapeutic target for combating P. aeruginosa infections.


Antibiotics are used to treat infections caused by bacteria. Over time, some of these infections have become more difficult to treat. This is because the bacteria can slow their growth and tolerate the antibiotic, known as persistence. It is important to find new ways to treat infections caused by persistent bacteria. This study researched a toxin­antitoxin system, called GNAT/HTH, that may play a role in bacterial persistence. This system could be a target for new antibiotics.


Assuntos
Toxinas Bacterianas , Infecções por Pseudomonas , Humanos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Pseudomonas aeruginosa , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Ciprofloxacina/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Peptídeos/farmacologia , Testes de Sensibilidade Microbiana
11.
Libyan J Med ; 19(1): 2294571, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38112195

RESUMO

Clostridium difficile (Clostridioides difficile) is a leading cause of nosocomial infections in hospitalized patients worldwide. Stool samples were collected from 112 inpatients admitted to different hospitals and were screened for C. difficile GDH + toxin A + B by immunoassay, and all positive samples by immunoassay were processed for molecular detection of C. difficile using the GeneXpert assay. C. difficile strains were detected in 12 (10.71%) out of 112 stool samples using the GDH + toxin A + B immunoassay method and toxigenic C. difficile was confirmed in 5 stool samples using the GeneXpert molecular assay. C. difficile strains were also detected in 7 (8.97%) out of 78 stool samples from intensive care unit patients, 3 (25%) out of 12 stool samples from internal medicine ward patients, 1 (11.11%) out of 9 stool samples from surgery ward patients, and 1 (10%) out of 10 stool samples from isolation ward patients using the GDH + toxin A + B immunoassay method and the toxigenic C. difficile strain was confirmed in 1, 2, 1, and 1 stool samples, respectively, using the GeneXpert molecular assay. Toxigenic C. difficile was confirmed in patients at 4 (51.14%) out of 7 hospitals. In the present study, we also analyzed the clinical information of patients with C. difficile-positive stool samples who were receiving one or more antibiotics during hospitalization. The binary toxin gene (cdt), the tcdC gene, and the C. difficile strain polymerase chain reaction (PCR) ribotype 027 were not detected using the GeneXpert molecular assay among 12 C. difficile-positive samples by immunoassay. This study should aid in the prevention of unnecessary empiric therapy and increase the understanding of the toxigenic C. difficile burden on the healthcare system in the southwestern province of Saudi Arabia.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Humanos , Clostridioides difficile/genética , Toxinas Bacterianas/genética , Toxinas Bacterianas/análise , Prevalência , Arábia Saudita/epidemiologia , Proteínas de Bactérias/genética , Sensibilidade e Especificidade , Fezes/química
12.
Mol Cells ; 46(12): 764-777, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38052492

RESUMO

Recombinant immunotoxins (RITs) are fusion proteins consisting of a targeting domain linked to a toxin, offering a highly specific therapeutic strategy for cancer treatment. In this study, we engineered and characterized RITs aimed at mesothelin, a cell surface glycoprotein overexpressed in various malignancies. Through an extensive screening of a large nanobody library, four mesothelin-specific nanobodies were selected and genetically fused to a truncated Pseudomonas exotoxin (PE24B). Various optimizations, including the incorporation of furin cleavage sites, maltose-binding protein tags, and tobacco etch virus protease cleavage sites, were implemented to improve protein expression, solubility, and purification. The RITs were successfully overexpressed in Escherichia coli, achieving high solubility and purity post-purification. In vitro cytotoxicity assays on gastric carcinoma cell lines NCI-N87 and AGS revealed that Meso(Nb2)-PE24B demonstrated the highest cytotoxic efficacy, warranting further characterization. This RIT also displayed selective binding to human and monkey mesothelins but not to mouse mesothelin. The competitive binding assays between different RIT constructs revealed significant alterations in IC50 values, emphasizing the importance of nanobody specificity. Finally, a modification in the endoplasmic reticulum retention signal at the C-terminus further augmented its cytotoxic activity. Our findings offer valuable insights into the design and optimization of RITs, showcasing the potential of Meso(Nb2)-PE24B as a promising therapeutic candidate for targeted cancer treatment.


Assuntos
Antineoplásicos , Toxinas Bacterianas , Imunotoxinas , Neoplasias , Anticorpos de Domínio Único , Animais , Camundongos , Humanos , Exotoxinas/genética , Exotoxinas/farmacologia , Exotoxinas/química , Imunotoxinas/genética , Imunotoxinas/farmacologia , Imunotoxinas/química , Mesotelina , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/farmacologia , Toxinas Bacterianas/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , ADP Ribose Transferases/genética , ADP Ribose Transferases/química , ADP Ribose Transferases/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/metabolismo , Neoplasias/tratamento farmacológico
13.
Toxins (Basel) ; 15(12)2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38133203

RESUMO

The production of therapeutic recombinant toxins requires careful host cell selection. Bacteria, yeast, and mammalian cells are common choices, but no universal solution exists. Achieving the delicate balance in toxin production is crucial due to potential self-intoxication. Recombinant toxins from various sources find applications in antimicrobials, biotechnology, cancer drugs, and vaccines. "Toxin-based therapy" targets diseased cells using three strategies. Targeted cancer therapy, like antibody-toxin conjugates, fusion toxins, or "suicide gene therapy", can selectively eliminate cancer cells, leaving healthy cells unharmed. Notable toxins from various biological sources may be used as full-length toxins, as plant (saporin) or animal (melittin) toxins, or as isolated domains that are typical of bacterial toxins, including Pseudomonas Exotoxin A (PE) and diphtheria toxin (DT). This paper outlines toxin expression methods and system advantages and disadvantages, emphasizing host cell selection's critical role.


Assuntos
Toxinas Bacterianas , Imunotoxinas , Neoplasias , Humanos , Animais , Toxinas Bacterianas/genética , Toxinas Bacterianas/uso terapêutico , Toxina Diftérica/genética , Imunotoxinas/genética , Imunotoxinas/uso terapêutico , Neoplasias/tratamento farmacológico , Exotoxina A de Pseudomonas aeruginosa , Proteínas Recombinantes de Fusão/uso terapêutico , Exotoxinas/genética , Mamíferos
14.
Virulence ; 14(1): 2287339, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38018865

RESUMO

Glaesserella parasuis is an early colonizer of the swine upper respiratory tract and can break through the respiratory barrier for further invasion. However, the mechanisms underlying G. parasuis increases epithelial barrier permeability remain unclear. This study demonstrates that G. parasuis cytolethal distending toxin (CDT) induces p53-dependent apoptosis in new-born piglet tracheal (NPTr) cells. Moreover, we report for the first time that leucine-rich repeat-containing protein 8A (LRRC8A), an essential subunit of the volume-regulated anion channel (VRAC), involves in apoptosis of NPTr cells mediated by G. parasuis CDT. Pharmacological inhibition of VRAC with either PPQ-102 or NS3728 largely attenuated CDT-induced apoptosis in NPTr cells. Additionally, experiments with cells knocked down for LRRC8A using small interfering ribonucleic acid (siRNA) or knocked out LRRC8A using CRISPR/Cas9 technology showed a significant reduction in CDT-induced apoptosis. Conversely, re-expression of Sus scrofa LRRC8A in LRRC8A-/- NPTr cells efficiently complemented the CDT-induced apoptosis. In summary, these findings suggest that LRRC8A is pivotal for G. parasuis CDT-induced apoptosis, providing novel insights into the mechanism of apoptosis caused by CDT.


Assuntos
Toxinas Bacterianas , Proteína Supressora de Tumor p53 , Suínos , Animais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Toxinas Bacterianas/genética , Proteínas de Transporte
15.
Anaerobe ; 83: 102765, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37573963

RESUMO

Clostridioides difficile infections (CDI) have a high morbidity and mortality rate and have always been considered a nosocomial disease. Nonetheless, the number of cases of community-acquired CDI is increasing, and new evidence suggests additional C. difficile reservoirs exist. Pathogenic C. difficile strains have been found in livestock, domestic animals, and meat, so a zoonotic transmission has been proposed. OBJECTIVE: The goal of this study was to isolate C. difficile strains in dogs at a veterinary clinic in Rio de Janeiro, Brazil, and characterize clinical and pathological findings associated with lower gastrointestinal tract disorders. METHODS: Fifty stool samples and biopsy fragments from dogs were obtained and cultured in the CDBA selective medium. All suggestive C. difficile colonies were confirmed by MALDI-TOF MS and PCR (tpi gene). Vancomycin, metronidazole, moxifloxacin, erythromycin, and rifampicin were tested for antibiotic susceptibility. Biofilm, motility assays, and a PCR for the toxins (tcdA, tcdB, and cdtB), as well as ribotyping, were also performed. RESULTS: Blood samples and colonic biopsy fragments were examined in C. difficile positive dogs. Ten animals (20%) tested positive for C. difficile by using stool samples, but not from biopsy fragments. Most C. difficile strains were toxigenic: six were A+B+ belonging to RT106; two were A+B+ belonging to RT014/020; and two were A-B- belonging to RT010. All strains were biofilm producers. In the motility test, 40% of strains were as motile as the positive control, CD630 (RT012). In the disc diffusion test, two strains (RT010) were resistant to erythromycin and metronidazole; and another to metronidazole (RT014/020). In terms of C. difficile clinicopathological correlations, no statistically significant morphological changes, such as pseudomembranous and "volcano" lesions, were observed. Regarding hematological data, dogs positive for C. difficile had leucopenia (p = 0.02) and lymphopenia (p = 0.03). There was a significant correlation between senility and the presence of C. difficile in the dogs studied (p = 0,02). CONCLUSIONS: Although C. difficile has not been linked to canine diarrheal disorders, it appears to be more common in dogs with intestinal dysfunctions. The isolation of ribotypes frequently involved in human CDI outbreaks around the world supports the theory of C. difficile zoonotic transmission.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Gastroenteropatias , Cães , Humanos , Animais , Clostridioides difficile/genética , Toxinas Bacterianas/genética , Clostridioides/genética , Metronidazol , Prevalência , Brasil/epidemiologia , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/veterinária , Ribotipagem , Eritromicina , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
16.
Anaerobe ; 82: 102755, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37406762

RESUMO

BACKGROUND: Diagnosis of Clostridioides difficile Infection (CDI) entails compatible clinical presentation and laboratory findings. We evaluated real-time polymerase chain reaction (qPCR) cycle threshold (CT) as a predictor for disease severity and TcdB enzyme immunoassay (EIA) results. METHODS: Inpatients or emergency department patients who tested positive for tcdB gene by PCR were evaluated. Patients' stools underwent testing for GDH and TcdA/B by EIA. Medical health records were reviewed for demographic, clinical presentation, laboratory, treatment and outcome data. Severity of CDI was calculated using various severity score indexes. RESULTS: The median CT of cases was 32.05 ± 5.45. The optimal cut-off for predicting toxin EIA positivity and severe CDI based on chart review was 32.6 and 29.8, respectively, with the area under the receiver operator characteristics curve (AUC) of 0.74 and 0.60 respectively. CONCLUSION: CT value was an acceptable predictor for EIA toxin but less so for clinical severity. Our study potentially supports a diagnostic algorithm including CT value to reduce the number of EIA toxin assays performed.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Humanos , Toxinas Bacterianas/genética , Toxinas Bacterianas/análise , Clostridioides difficile/genética , Clostridioides/genética , Técnicas Imunoenzimáticas , Infecções por Clostridium/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real , Fezes/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/análise
17.
Theranostics ; 13(11): 3497-3508, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441597

RESUMO

Background and rationale: Cancer therapy have evolved remarkably over the past decade, providing new strategies to inhibit cancer cell growth using immune modulation, with or without gene therapy. Specifically, suicide gene therapies and immunotoxins have been investigated for the treatment of tumors by direct cancer cell cytotoxicity. Recent advances in mRNA delivery also demonstrated the potential of mRNA-based vaccines and immune-modulators for cancer therapeutics by utilizing nanocarriers for mRNA delivery. Methods: We designed a bacterial toxin-encoding modified mRNA, delivered by lipid nanoparticles into a B16-melanoma mouse model. Results: We showed that local administration of LNPs entrapping a modified mRNA that encodes for a bacterial toxin, induced significant anti-tumor effects and improved overall survival of treated mice. Conclusions: We propose mmRNA-loaded LNPs as a new class of anti-tumoral, toxin-based therapy.


Assuntos
Toxinas Bacterianas , Nanopartículas , Neoplasias , Camundongos , Animais , RNA Mensageiro/genética , Lipossomos , Terapia Genética , Neoplasias/terapia , Toxinas Bacterianas/genética
18.
Anaerobe ; 82: 102757, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37380012

RESUMO

OBJECTIVE: The aim of this study was to analyze enterotoxigenic Bacteroides fragilis (ETBF) isolates from colorectal biopsies of subjects with a histological analysis positive for colorectal cancer (CRC), pre-cancerous lesions (pre-CRC) or with a healthy intestinal tissue and to evaluate the environmental factors that may not only concur to CRC development but may also affect gut microbiota composition. METHODS: ETBF isolates were typed using the ERIC-PCR method, while PCR assays were performed to investigate the bft alleles, the B. fragilis pathogenicity island (BFPAI) region and the cepA, cfiA and cfxA genes. Susceptibility to antibiotics was tested using the agar dilution method. Environmental factors that could play a role in promoting intestinal dysbiosis were evaluated throughout a questionnaire administered to the subjects enrolled. RESULTS: Six different ERIC-PCR types were identified. The type denominated C in this study was the most prevalent, in particular among the biopsies of subjects with pre-CRC, while an isolate belonging to a different type, denominated F, was detected in a biopsy from a subject with CRC. All the ETBF isolates from pre-CRC or CRC subjects had a B. fragilis pathogenicity island (BFPAI) region pattern I, while those from healthy individuals showed also different patterns. Furthermore, 71% of isolates from subjects with pre-CRC or CRC were resistant to two or more classes of antibiotics vs 43% of isolates from healthy individuals. The B. fragilis toxin BFT1 was the most frequently detected in this study, confirming the constant circulation of this isoform strains in Italy. Interestingly, BFT1 was found in 86% of the ETBF isolates from patients with CRC or pre-CRC, while the BFT2 was prevalent among the ETBF isolates from healthy subjects. No substantial differences based on sex, age, tobacco and alcohol consumption were observed between healthy and non-healthy individuals included in this study, while most of the subjects with CRC or pre-CRC lesions were subjected to pharmacological therapy (71%) and showed a body mass index (BMI) that falls within the overweight range (86%). CONCLUSIONS: Our data suggest that some types of ETBF seem to better adapt and colonize the human gut and that the selective pressure exerted by factors related to lifestyle, such as pharmacological therapy and weight, could facilitate their persistence in the gut and their possible involvement in CRC development.


Assuntos
Infecções Bacterianas , Toxinas Bacterianas , Infecções por Bacteroides , Neoplasias Colorretais , Humanos , Bacteroides fragilis , Toxinas Bacterianas/genética , Disbiose , Metaloendopeptidases/genética , Infecções por Bacteroides/microbiologia , Neoplasias Colorretais/microbiologia , Antibacterianos
19.
Biochem Soc Trans ; 51(3): 1235-1244, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37199493

RESUMO

ABC toxins are pore-forming toxins characterised by the presence of three distinct components assembled into a hetero-oligomeric toxin complex ranging in size from 1.5-2.5 MDa. Most ABC toxins studied to date appear to be insecticidal toxins, although genes predicted to encode for homologous assemblies have also been found in human pathogens. In insects, they are delivered to the midgut either directly via the gastrointestinal tract, or via a nematode symbiont, where they attack the epithelial cells and rapidly trigger widespread cell death. At the molecular level, the homopentameric A subunit is responsible for binding to lipid bilayer membranes and introducing a protein translocation pore, through which a cytotoxic effector - encoded at the C-terminus of the C subunit - is delivered. The B subunit forms a protective cocoon that encapsulates the cytotoxic effector, part of which is contributed by the N-terminus of the C subunit. The latter also includes a protease motif that cleaves the cytotoxic effector, releasing it into the pore lumen. Here, we discuss and review recent studies that begin to explain how ABC toxins selectively target specific cells, establishing host tropism, and how different cytotoxic effectors trigger cell death. These findings allow for a more complete understanding of how ABC toxins function in an in vivo context, which in turn provides a stronger foundation for understanding how they cause disease in invertebrate (and potentially also vertebrate) hosts, and how they might be re-engineered for therapeutic or biotechnological purposes.


Assuntos
Toxinas Bacterianas , Animais , Humanos , Toxinas Bacterianas/toxicidade , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Membrana Celular/metabolismo , Insetos/metabolismo , Células Epiteliais/metabolismo
20.
Infect Immun ; 91(4): e0009223, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36975808

RESUMO

Traditional clinical models for predicting recurrent Clostridioides difficile infection do not perform well, likely owing to the complex host-pathogen interactions involved. Accurate risk stratification using novel biomarkers could help prevent recurrence by improving underutilization of effective therapies (i.e., fecal transplant, fidaxomicin, bezlotoxumab). We used a biorepository of 257 hospitalized patients with 24 features collected at diagnosis, including 17 plasma cytokines, total/neutralizing anti-toxin B IgG, stool toxins, and PCR cycle threshold (CT) (a proxy for stool organism burden). The best set of predictors for recurrent infection was selected by Bayesian model averaging for inclusion in a final Bayesian logistic regression model. We then used a large PCR-only data set to confirm the finding that PCR CT predicts recurrence-free survival using Cox proportional hazards regression. The top model-averaged features were (probabilities of >0.05, greatest to least): interleukin 6 (IL-6), PCR CT, endothelial growth factor, IL-8, eotaxin, IL-10, hepatocyte growth factor, and IL-4. The accuracy of the final model was 0.88. Among 1,660 cases with PCR-only data, cycle threshold was significantly associated with recurrence-free survival (hazard ratio, 0.95; P < 0.005). Certain biomarkers associated with C. difficile infection severity were especially important for predicting recurrence; PCR CT and markers of type 2 immunity (endothelial growth factor [EGF], eotaxin) emerged as positive predictors of recurrence, while type 17 immune markers (IL-6, IL-8) were negative predictors. In addition to novel serum biomarkers (particularly, IL-6, EGF, and IL-8), the readily available PCR CT may be critical to augment underperforming clinical models for C. difficile recurrence.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Humanos , Clostridioides difficile/genética , Toxinas Bacterianas/genética , Interleucina-8 , Interleucina-6 , Teorema de Bayes , Fatores de Crescimento Endotelial/uso terapêutico , Fator de Crescimento Epidérmico/uso terapêutico , Infecções por Clostridium/diagnóstico , Infecções por Clostridium/tratamento farmacológico , Biomarcadores/análise , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA